Saving Results#
The Layer
data is stored within inner NumPy N-dimensional arrays. Therefore, we can utilize any conventional method to save it. In this particular example, we employ the tifffile package.
from rforge import Raster
from rforge import composite
import tifffile
Generating Composite#
file_path = 'file/path/example.tif'
raster = Raster(scale=1)
layer_dict = [
{'name': 'red', 'id': 1},
{'name': 'blue', 'id': 2},
{'name': 'green', 'id': 3},
{'name': 'alpha', 'id': 4},
]
raster.import_layers(file_path, layer_dict)
layers = [raster.layers['red'], raster.layers['green'], raster.layers['blue']]
gamma = [1, 1, 1]
composite_layer = composite(layers=layers, alpha=raster.layers['alpha'], gamma=gamma)
raster.add_layer(layer=composite_layer, name='rgb')
Saving Layers#
tifffile.imwrite('file/path/example/red.tif', raster.layers['red'].array)
tifffile.imwrite('file/path/example/blue.tif', raster.layers['blue'].array)
tifffile.imwrite('file/path/example/green.tif', raster.layers['green'].array)
Saving Composite#
tifffile.imwrite('file/path/example/rgb.tif', raster.layers['rgb'].array)